Using a Plan Graph with Interaction Estimates for Probabilistic Planning
نویسندگان
چکیده
Many planning and scheduling applications require the ability to deal with uncertainty. Often this uncertainty can be characterized in terms of probability distributions on the initial conditions and on the outcomes of actions. These distributions can be used to guide a planner towards the most likely plan for achieving the goals. This work is focused on developing domain-independent heuristics for probabilistic planning based on this information. The approach is to first search for a low cost deterministic plan using a classical planner. A novel plan graph cost heuristic is used to guide the search towards high probability plans. The resulting plans can be used in a system that handles unexpected outcomes by runtime replanning. The plans can also be incrementally augmented with contingency branches for the most critical action outcomes.
منابع مشابه
Using Interaction to Compute Better Probability Estimates in Plan Graphs
Plan graphs are commonly used in planning to help compute heuristic “distance” estimates between states and goals. A few authors have also attempted to use plan graphs in probabilistic planning to compute estimates of the probability that propositions can be achieved and actions can be performed. This is done by propagating probability information forward through the plan graph from the initial...
متن کاملRevisiting Partial-Order Probabilistic Plannin
We present a partial-order probabilistic planning algorithm that adapts plan-graph based heuristics implemented in Repop. We describe our implemented planner, Reburidan, named after its predecessors Repop and Buridan. Reburidan uses plan-graph based heuristics to first generate a base plan. It then improves this plan using plan refinement heuristics based on the success probability of subgoals....
متن کاملProbabilistic Plan Graph Heuristic for Probabilistic Planning
This work focuses on developing domain-independent heuristics for probabilistic planning problems characterized by full observability and non-deterministic effects of actions that are expressed by probability distributions. The approach is to first search for a high probability deterministic plan using a classical planner. A novel probabilistic plan graph heuristic is used to guide the search t...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملSequential Monte Carlo in Probabilistic Planning Reachability Heuristics
The current best conformant probabilistic planners encode the problem as a bounded length CSP or SAT problem. While these approaches can find optimal solutions for given plan lengths, they often do not scale for large problems or plan lengths. As has been shown in classical planning, heuristic search outperforms CSP/SAT techniques (especially when a plan length is not given a priori). The probl...
متن کامل